Submit Info #3670

Problem Lang User Status Time Memory
Range Affine Range Sum cpp noshi91 AC 1331 ms 33.65 MiB

ケース詳細
Name Status Time Memory
example_00 AC 2 ms 0.68 MiB
max_random_00 AC 1328 ms 33.65 MiB
max_random_01 AC 1301 ms 33.55 MiB
max_random_02 AC 1331 ms 33.55 MiB
random_00 AC 1048 ms 26.42 MiB
random_01 AC 1108 ms 30.92 MiB
random_02 AC 646 ms 5.67 MiB
small_00 AC 3 ms 0.67 MiB
small_01 AC 3 ms 0.72 MiB
small_02 AC 5 ms 0.70 MiB
small_03 AC 3 ms 0.67 MiB
small_04 AC 2 ms 0.68 MiB
small_05 AC 3 ms 0.67 MiB
small_06 AC 4 ms 0.67 MiB
small_07 AC 5 ms 0.67 MiB
small_08 AC 2 ms 0.68 MiB
small_09 AC 3 ms 0.67 MiB
small_random_00 AC 5 ms 0.71 MiB
small_random_01 AC 5 ms 0.72 MiB

#line 1 "test/lazy_segment_tree.yosupo.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum" #line 1 "data_structure/lazy_segment_tree.cpp" #include <cassert> #include <cstddef> #include <vector> template <class A> class lazy_segment_tree { using size_t = std::size_t; using V = typename A::value_structure; using T = typename V::value_type; using O = typename A::operator_structure; using E = typename O::value_type; class node_type { public: T value; E lazy; node_type(const T &value, const E &lazy) : value(value), lazy(lazy) {} }; static size_t lsb(const size_t x) { return __builtin_ctz(x); } static size_t msb(const size_t x) { return 31 - __builtin_clz(x); } static T get(const node_type &x) { return A::operation(x.value, x.lazy); } static void add(E &x, const E &y) { x = O::operation(x, y); } std::vector<node_type> tree; void propagate(const size_t index) { add(tree[index * 2].lazy, tree[index].lazy); add(tree[index * 2 + 1].lazy, tree[index].lazy); tree[index].lazy = O::identity; } void propagate_bound(const size_t index) { if (index == 0) return; const size_t lsb_ = lsb(index); for (size_t h = msb(index); h != lsb_; h -= 1) propagate(index >> h); } void recalc(const size_t index) { tree[index].value = V::operation(get(tree[index * 2]), get(tree[index * 2 + 1])); } void recalc_bound(size_t index) { if (index == 0) return; index >>= lsb(index); while (index != 1) { index /= 2; recalc(index); } } public: lazy_segment_tree() = default; explicit lazy_segment_tree(const size_t n) : tree(n * 2, node_type(V::identity, O::identity)) {} size_t size() const { return tree.size() / 2; } T fold(size_t first, size_t last) { assert(first <= last); assert(last <= size()); first += size(); last += size(); propagate_bound(first); recalc_bound(first); propagate_bound(last); recalc_bound(last); T fold_l = V::identity; T fold_r = V::identity; while (first != last) { if (first % 2 != 0) { fold_l = V::operation(fold_l, get(tree[first])); first += 1; } first /= 2; if (last % 2 != 0) { last -= 1; fold_r = V::operation(get(tree[last]), fold_r); } last /= 2; } return V::operation(fold_l, fold_r); } void update_range(size_t first, size_t last, const E &x) { assert(first <= last); assert(last <= size()); first += size(); last += size(); propagate_bound(first); propagate_bound(last); const size_t first_c = first; const size_t last_c = last; while (first != last) { if (first % 2 != 0) { add(tree[first].lazy, x); first += 1; } first /= 2; if (last % 2 != 0) { last -= 1; add(tree[last].lazy, x); } last /= 2; } recalc_bound(first_c); recalc_bound(last_c); } void update_point(size_t index, const T &x) { assert(index < size()); index += size(); for (size_t h = msb(index); h != 0; h -= 1) propagate(index >> h); tree[index] = node_type(x, O::identity); while (index != 1) { index /= 2; recalc(index); } } }; #line 1 "other/modint.cpp" #include <cstdint> template <std::uint_fast64_t Modulus> class modint { using u64 = std::uint_fast64_t; public: using value_type = u64; static constexpr u64 mod = Modulus; private: static_assert(mod < static_cast<u64>(1) << 32, "Modulus must be less than 2**32"); u64 v; constexpr modint &negate() noexcept { if (v != 0) v = mod - v; return *this; } public: constexpr modint(const u64 x = 0) noexcept : v(x % mod) {} constexpr u64 &value() noexcept { return v; } constexpr const u64 &value() const noexcept { return v; } constexpr modint operator+() const noexcept { return modint(*this); } constexpr modint operator-() const noexcept { return modint(*this).negate(); } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { v += rhs.v; if (v >= mod) v -= mod; return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (v < rhs.v) v += mod; v -= rhs.v; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { v = v * rhs.v % mod; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = mod - 2; while (exp != 0) { if (exp % 2 != 0) *this *= rhs; rhs *= rhs; exp /= 2; } return *this; } }; template <std::uint_fast64_t Modulus> constexpr typename modint<Modulus>::u64 modint<Modulus>::mod; #line 1 "other/affine.cpp" template <class T> class affine { public: T a; T b; constexpr affine(const T &a = 1, const T &b = 0) noexcept : a(a), b(b) {} constexpr T evaluate(const T &x) const noexcept { return x * a + b; } friend constexpr affine operator+(const affine &l, const affine &r) noexcept { return affine(l.a + r.a, l.b + r.b); } constexpr affine composite(const affine &r) const noexcept { return affine(a * r.a, b * r.a + r.b); } }; template <class T> class affine_composite_monoid { public: using value_type = affine<T>; static constexpr value_type operation(const value_type &l, const value_type &r) noexcept { return l.composite(r); } static constexpr value_type identity{}; }; #line 1 "other/cartesian_product_monoid.cpp" #include <utility> template <class M, class N> class cartesian_product_monoid { using T = std::pair<typename M::value_type, typename N::value_type>; public: using value_type = T; static constexpr T operation(const T &l, const T &r) noexcept { return T(M::operation(l.first, r.first), N::operation(l.second, r.second)); } static constexpr T identity{M::identity, N::identity}; }; #line 1 "other/plus_monoid.cpp" template <class T> class plus_monoid { public: using value_type = T; static T operation(const T l, const T r) { return l + r; } static constexpr T identity = 0; }; #line 4 "other/sum_affine_action.cpp" template <class T> class sum_affine_action { public: using value_structure = cartesian_product_monoid<plus_monoid<T>, plus_monoid<T>>; using operator_structure = affine_composite_monoid<T>; private: using U = typename value_structure::value_type; using E = typename operator_structure::value_type; public: static constexpr U operation(const U &l, const E &r) { return U(l.first * r.a + l.second * r.b, l.second); } }; #line 6 "test/lazy_segment_tree.yosupo.test.cpp" #include <iostream> int main() { using mint = modint<998244353>; int n, q; std::cin >> n >> q; lazy_segment_tree<sum_affine_action<mint>> lst(n); for (int i = 0; i != n; i += 1) { int a; std::cin >> a; lst.update_point(i, {a, 1}); } for (int i = 0; i != q; i += 1) { int t; std::cin >> t; switch (t) { case 0: { int l, r, b, c; std::cin >> l >> r >> b >> c; lst.update_range(l, r, {b, c}); } break; case 1: { int l, r; std::cin >> l >> r; std::cout << lst.fold(l, r).first.value() << std::endl; } break; } } }